A Retrospective Exploratory Study of the Variability of Radiologists Measurements in a Selected Subgroup of Subjects Enrolled in a Clinical Trial

Robert W. Ford ¹, Kathy Zhou Ph. D. ², Robert R. Ford M.D. ¹

1 RadPharm Imaging Core Lab (Princeton, NJ), 2 Department of Public Health Weill Medical College (New York, NY)

Background Information

- Independent centralized review of imaging studies is an established means of validating data used in support of corporate "go-no go" decisions, regulatory approval, and post marketing claims
- This study was performed to investigate and assign a concise value(s) to the inherent human variability in radiological measurements, despite best efforts to standardize assessment using Response Evaluation Criteria in Solid Tumors (RECIST)

Materials and Methods

 An experienced radiologist (24 years) and a research intern reviewed digital Computerized Tomographic (CT) scans from 31 subjects to identify 150 primary and metastatic tumors. Tumors were categorized into 4 categories.

Tumor Category	Tumor Description		
1	Defined Edge/Radially Symmetric		
2	Defined Edge/Irregular Shape		
3	Blurred Edge/Radially Symmetric		
4	Blurred Edge/Irregular Shape		

Category 1

Category 3

Category 2

Category 4

Training The Radiologist Readers

- · Each radiologist reader attended a training session so that the study was performed consistently
- There was a presentation covering an example of lesion measurement and the correct method of recording obtained data into the form provided
- Also included in this presentation were the software operation and lesion measurement guidelines

Lesion Measurement

- At the time of the read, each radiologist was provided with written directions for software operation and Lesion Measurement
- Fifteen radiologists independently measured each tumor
- The zoom function was allowed to be used freely while window and level were held constant for each lesion
- The axial location of each lesion was specified to the radiologist by an image number
- The lesion to be measured was identified by a numbered annotation encircling the lesion that did not describe its geographic boundaries
- The lesions were presented to each reader in a categorically arbitrary sequence
- · Each reader measured the longest dimension of each lesion in the axial plane using electronic calipers
- All scans were digital and thus required no pixel calibration (Calibration factors were encoded in the DICOM header)
- All readers used the same validated DICOM based software application

Statistical Analysis

- Statistical analysis was performed using mixed effects modeling to partition error according to its contributing factors
- Mixed Effects Modeling allows for the analysis of heterogeneous data

Results

Explanation of Terms

- <u>Total Error</u> Accounts for all the variance seen in the measurements of the lesions
- <u>Between Reader Error</u> The portion of the variance seen in the measurements that the radiologist readers are responsible for
- <u>Random Error</u> The partition of the total error from all other contributing sources

Significant Data

- The between reader error accounted for 4.15% percent of total errors for the length
- The total error is smallest for category 1 and largest for category 4 as expected

	No of Tumors	Between Reader Error	Random Error	Total Error	Reader Error/Total Error
Overall	150	0.32 (0.14, 0.77)	7.51 (7.08, 8.01)	7.83	4.15%
Cat. 1	54	0.19 (0.08, 0.45)	1.25 (1.14, 1.39)	1.45	13.4%
Cat. 2	40	0.26 (0.08, 0.76)	4.67 (4.16, 5.24)	4.93	5.28%
Cat. 3	16	0.44 (0.14, 1.39)	3.92 (3.24, 4.75)	4.36	10%
Cat. 4	40	0.81 (0.25, 2.56)	19.98 (17.72, 22.47)	20.79	3.90%

Conclusions

- The [(low reader error) / (total error)] suggests that the radiologist readers were only responsible for a small portion of the total error found in this measuring process
- Due to the fact that the intra-reader variability is usually lower than the inter-reader variability one can speculate that these 15 radiologists reading one lesion would be comparable to 1 radiologist reading the same lesion 15 times

Continuing Research

- The structure and implementation of the project facilitates continuing research
- Analyze intra-reader variability by repeating the process at a later date
- Repeating the project will also help to strengthen conclusions made based on the current data
- Other functions in the software could be used as the variable
- This results database can now be used to qualify new radiologist readers and retest previously qualified readers