Please Wait...

The New Road of Cardio-Oncology in Clinical Development

Applied Clinical Trials

The prevalence of cardiovascular toxicity associated with oncology drugs has triggered a new clinical discipline that aims to promote safer drugs and better outcomes for cancer patients.

The prevalence of cardiovascular toxicity associated with oncology drugs has resulted in increased public, regulatory, and industry awareness for cardiovascular (CV) safety within oncology drug development. It has also triggered a new clinical discipline called cardio-oncology that aims to bridge the gap between cardiology and oncology and promote safer drugs and better outcomes for cancer patients.

For drug sponsors, this means rethinking the design of routine clinical trials and implementing effective CV safety strategies to evaluate potential drug induced cardiotoxicity. The benefits of an effective cardio-oncology strategy are long lasting, both from a clinical perspective (improved patient outcomes) and an economic one (getting a successful drug to market).

Advances in technology and our understanding of cardiotoxicity mechanisms have resulted in improved CV safety monitoring strategies, which include endpoints for cardiac performance (i.e., left ventricular function; LVF), cardiac electrophysiology (i.e., electrocardiograms; ECGs), and hemodynamics (i.e., blood pressure; BP). Taken together, sponsors are empowered to take a multi-pronged, comprehensive approach to CV safety in their clinical trials.

LVF, the most clinically relevant endpoint for cardiotoxicity associated with chemotherapeutic agents, is primarily assessed by imaging modalities such as echocardiography, cardiac MRI, and, to a lesser extent, MUGA and CT. Recent advances in cardiac modalities, including Tissue Doppler imaging and myocardial deformation imaging, are paving the way for increasingly sensitive detection of cardiac dysfunction.

Current FDA data indicate that oncology drugs are most frequently associated with QT prolongation (indicative of potential pro-arrhythmia) compared to other therapeutic areas. This has resulted in formal regulatory guidance, ICH-E14, issued by the International Conference on Harmonization, requiring sponsors to assess ECG QT intervals using a formal thorough QT study. The assessment of cancer drugs using this method presents unique challenges for sponsors due to high drug toxicity, narrow therapeutic windows, disease comorbidities, and placebo use. Advances in ECG technology provide sponsors and sites with increased capabilities for digital ECG acquisition, electronic data transfer, algorithm-guided analysis, and data reproducibility in support of regulatory approvals.

Targeted therapies which attack tumor vasculature can have systemic adverse effects on blood pressure, with the potential for causing acute or chronic hypertension. Advancements in blood pressure technologies enable automated and ambulatory BP endpoints to be integrated into a study protocol, providing sponsors with accurate and robust datasets for a better understanding of drug safety profiles. Additionally, the increased portability and improved functionality of BP devices enable data capture and electronic submission directly from a patient's home, increasing patient participation and protocol compliance.

With a growing number of CV safety approaches, sponsors must select and implement appropriate endpoints to determine and mitigate the risks associated with new cancer drugs. As the CV safety paradigm shifts to a more integrated approach, sponsors are relying on complimentary methodologies to gain a complete picture of a drug's safety profile. This is exemplified by the emergence of integrated CV safety services offered by centralized core labs, which can manage ECG, BP, and imaging data and have therapeutic expertise and regulatory knowledge to provide high quality data in support of safer cancer drugs.

David S. Herron Executive VP and President, Medical Imaging and Cardiac Core Lab Division, BioClinica, Inc.

Author: 

LEARN MORE OR SPEAK WITH OUR EXPERTS

CONTACT US
Leader in Clinical Trial
Management Solutions

Successful clinical trials require the ability to see key details and uncover hidden insights. Bioclinica utilizes science and technology to bring clarity to clinical trials, helping companies to develop new life-improving therapies more efficiently and safely.

We're hiring recent tech grads in #RTP for #pharma sector! Our innov. clinical financial solution gives our client… https://t.co/GHgOfszO0T
bioclinica (5 hours ago)
Great to be @DrugInfoAssn DIA China! Ask us @bioclinica how sponsors & CROs can optimize electronic data capture… https://t.co/TtE4AiLnqY
bioclinica (11 hours ago)
RT @bioclinica: Kinks in the clinical supply chain? Check out how one of our clients is using clinical supply optimization technology for m…
bioclinica (11 hours ago)
RT @bioclinica: Welcoming everyone to KOP for #OCTEast Coast!!
bioclinica (11 hours ago)
Welcoming everyone to KOP for #OCTEast Coast!!
bioclinica (Yesterday)
Case processing is an important aspect of post-marketing drug safety surveillance. Here's a case study showing how… https://t.co/UMYp92Puvc
bioclinica (2 days ago)

Latest Blogs:

Latin America: Benefit from the Right Partner
Removing Risk from Clinical Trial Management System (CTMS) Implementations
Collaboration Between Clinical Operations and the Logistics and Supply Chain Teams is Key to Trial Success
The Value of Protocol Review
CTMS and RBM: Hot Topics at OCT Nordics in Copenhagen